17. Line Fitting

A very common problem in data analysis is looking for relationships between different parameters and fitting lines or surfaces to data. The simplest example is fitting a straight line and we will discuss that here – it is also covered in Chapter 4 of Pal Wessel’s notes.

Least-squares straight-line fitting

The process of fitting a straight line is one of the simplest examples of an inverse problem. For \(n \) pairs of data points \(X_i, Y_i, i = 1, 2, \ldots, n \) and fit the data with a relationship

\[
y_i = a + bX_i
\]

where \(y_i \) is the predicted value of \(Y_i \). We can use the \(\chi^2 \) statistic to measure the misfit

\[
\chi^2(a,b) = \sum_{i=1}^{n} \left(\frac{Y_i - a - bX_i}{\sigma_i} \right)^2
\]

where \(\sigma_i \) are the uncertainties (or estimates of the uncertainties which can be set to unity in the absence of better knowledge) in the \(Y \) values.

Our goal is to find the values of \(a \) and \(b \) that minimize \(\chi^2 \). To do this we find take the partial derivates of \(\chi^2 \) with respect to \(a \) and \(b \) and solve for the values of \(a \) and \(b \) at which they are both zero

\[
\frac{\partial \chi^2}{\partial a} = -2\sum_{i=1}^{n} \left(\frac{Y_i - a - bX_i}{\sigma_i^2} \right) = 0
\]

\[
\frac{\partial \chi^2}{\partial b} = -2\sum_{i=1}^{n} X_i \left(\frac{Y_i - a - bX_i}{\sigma_i^2} \right) = 0
\]

If we define

\[
S = \sum_{i=1}^{n} \frac{1}{\sigma_i}, \quad S_X = \sum_{i=1}^{n} \frac{X_i}{\sigma_i^2}, \quad S_Y = \sum_{i=1}^{n} \frac{Y_i}{\sigma_i^2}, \quad S_{XX} = \sum_{i=1}^{n} \frac{X_i^2}{\sigma_i^2}, \quad S_{XY} = \sum_{i=1}^{n} \frac{X_iY_i}{\sigma_i^2}
\]

then equation (7) reduces to

\[
aS + bS_X = S_Y
\]

\[
aS_X + bS_{XX} = S_{XY}
\]

The solution is

\[
a = \frac{S_{XX}S_Y - S_XS_{XY}}{\Delta}
\]

\[
b = \frac{SS_{XY} - S_XS_Y}{\Delta}
\]

with

\[
\Delta = SS_{XX} - S_X^2
\]

We can also estimate the uncertainties in \(a \) and \(b \). To do this we sum the variance in \(a \) and \(b \) resulting from the variance in each of the \(Y \) values. This can be written mathematically
\[s_a^2 = \sum_{i=1}^{n} \sigma_i^2 \left(\frac{\partial a}{\partial Y_i} \right)^2 \]
\[s_b^2 = \sum_{i=1}^{n} \sigma_i^2 \left(\frac{\partial b}{\partial Y_i} \right)^2 \]
\[\text{After substituting derivatives obtained from equation (17-6) and a fair amount of manipulation we get} \]
\[s_a^2 = \frac{S_{X\chi}}{\Delta} \]
\[s_b^2 = \frac{S}{\Delta} \]
\[\text{We can also estimate the covariance of the uncertainties in } a \text{ and } b \]
\[s_{ab}^2 = \sum_{i=1}^{n} \sigma_i^2 \left(\frac{\partial a}{\partial Y_i} \right) \left(\frac{\partial b}{\partial Y_i} \right) = -\frac{S_{X}}{\Delta} \]
\[\text{Our estimate of the correlation coefficient between } a \text{ and } b, \text{ becomes} \]
\[r = \frac{s_{ab}}{s_a s_b} = \frac{-S_{X}}{\sqrt{SS_{XX}}} . \]
\[\text{If we assume our estimates of the uncertainty in } Y \text{ are correct, we can check if the fit is adequate (significant) at the } \alpha \text{ level by comparing our value of } \chi^2 \text{ to the critical } \chi_{\alpha}^2 \text{ for } n-2 \text{ degrees of freedom. Provided it does not exceed this value then the data is fit adequately by the straight line.} \]
\[\text{We can test the significance of the correlation of } x \text{ and } y, \text{ by applying the } t \text{-statistic with } n-2 \text{ degrees of freedom to determine whether the slope and our estimate of its uncertainty are significantly different from 0} \]
\[t = \frac{(b - 0)}{s_b} \]
\[\text{We can write the 95\% confidence limits for } b \text{ as} \]
\[b \pm t_{0.025} s_b \]
\[\text{If these limits enclose zero we cannot be confident that } x \text{ and } y \text{ are correlated at the 95\% level.} \]
\[\text{If we do not know the uncertainty of our data but know that the straight-line model is correct, then we can initially assume an uncertainty of 1 for the purpose of getting a straight line fit and then estimate it from the residuals according to} \]
\[s^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - a - bX_i)^2 \]
\[\text{We can use } s^2 \text{ in place of the population variance } \sigma^2 \text{ to estimate the slope uncertainties but this will lead to a underestimate of the uncertainty for small } n \text{ because there is additional uncertainty arising from using an estimate of } \sigma^2 \text{ and not its true value.} \]
(Note that Paul Wessel uses σ_b etc instead of s_b in section 4.1 but this is not consistent with the notation he introduces in Chapter 1 and that we have used since s_b is clearly an estimate based on a limited sample of points not the entire population)

Line fitting with errors in x and y

It is important to note that equation (17-2) assumes that our determinations of x have no uncertainty. In some instances this is a good assumption — for example our determinations of time or spatial coordinate will often have negligible uncertainty. For other instances it is a poor approximation — for example if we plot the concentration of two dissolved chemicals in seawater or two trace elements in a rock, they may both have similar analytical errors. If we have errors in both variables then a better measure of misfit is given by

$$E = \sum_{i=1}^{n} \left[\left(\frac{y_i - Y_i}{\sigma_{y,i}} \right)^2 + \left(\frac{x_i - X_i}{\sigma_{x,i}} \right)^2 \right]$$

(17-15)

where X_i and Y_i are the observed data and x_i and y_i are the modeled values that are required to lie on a straight line

$$y_i = a + bx_i$$

(17-16)

Our goal is to find the values of a and b that minimize E. To do this we use the method of Lagrange Multipliers. We can write equation (17-16) as

$$f_i = a + bx_i - y_i = 0$$

(17-17)

and since the f_i values are constrained to be zero we can write equation (17-15) as

$$E = \sum_{i=1}^{n} \left[\left(\frac{y_i - Y_i}{\sigma_{y,i}} \right)^2 + \left(\frac{x_i - X_i}{\sigma_{x,i}} \right)^2 + 2\lambda_i f_i \right]$$

(17-18)

where the $2\lambda_i$ values are unknown constant Lagrange multipliers and the factor of 2 is for algebraic convenience.

We now set the partial derivatives of E to zero to find the values that give a minimum

$$\frac{\partial E}{\partial x_i} = \frac{\partial E}{\partial y_i} = \frac{\partial E}{\partial a} = \frac{\partial E}{\partial b} = 0$$

Now if we make the assumption that all the sigma values are equal to unity this gives

$$\frac{\partial E}{\partial x_i} = \frac{\partial}{\partial x_i} \left(x_i - X_i \right)^2 + \frac{\partial}{\partial x_i} \left(\lambda_i bx_i \right) = 2 \left(x_i - X_i \right) + 2b\lambda_i = 0$$

(17-19)

$$\frac{\partial E}{\partial y_i} = \frac{\partial}{\partial y_i} \left(y_i - Y_i \right)^2 - \frac{\partial}{\partial y_i} \left(\lambda_i y_i \right) = 2 \left(y_i - Y_i \right) - 2\lambda_i = 0$$

(17-20)

$$\frac{\partial E}{\partial a} = 2 \sum_{i=1}^{n} \left[\frac{\partial}{\partial a} \left(\lambda_i a \right) \right] = 2 \sum_{i=1}^{n} \lambda_i = 0$$

(17-21)

$$\frac{\partial E}{\partial b} = 2 \sum_{i=1}^{n} \left[\frac{\partial}{\partial b} \left(\lambda_i bx_i \right) \right] = 2 \sum_{i=1}^{n} \lambda_i x_i = 0$$

(17-22)

From equations (17-19) and (17-20) we can write
\[x_i = X_i - b\lambda_i \]
\[y_i = Y_i + \lambda_i \] \hspace{1cm} (17-23)

Substituting for \(x_i \) and \(y_i \) in equation (17-16) yields
\[Y_i + \lambda_i = a + b\left(X_i - b\lambda_i \right) = a + bX_i - b^2\lambda_i \] \hspace{1cm} (17-24)

Solving for \(\lambda_i \)
\[\lambda_i = \frac{a + bX_i - Y_i}{1 + b^2} \] \hspace{1cm} (17-25)

Substituting for \(\lambda_i \) into equation (17-21) yields
\[\sum_{i=1}^{n} \frac{a + bX_i - Y_i}{1 + b^2} = 0 \] \hspace{1cm} (17-26)

Substituting for \(\lambda_i \) from equations (17-25) and for \(x_i \) from (17-23) into equation (17-22) yields
\[\sum_{i=1}^{n} \left(\frac{a + bX_i - Y_i}{1 + b^2} \right) \left(X_i - b\lambda_i \right) = \sum_{i=1}^{n} \frac{aX_i + bX_i^2 - Y_iX_i}{1 + b^2} - \sum_{i=1}^{n} b \left(\frac{a + bX_i - Y_i}{1 + b^2} \right)^2 = 0 \] \hspace{1cm} (17-27)

We now have reduced the \(n + 2 \) equations for \(a \), \(b \) and \(\lambda_i \) to 2 equations (17-26 and 17-27) for \(a \) and \(b \). Since the denominator in equation (17-26) cannot reduce to zero, we can write
\[\sum_{i=1}^{n} a = \sum_{i=1}^{n} Y_i - b\sum_{i=1}^{n} X_i \]
\[\Rightarrow a = \overline{Y} - b\overline{X} \] \hspace{1cm} (17-28)

where \(\overline{X} \) and \(\overline{Y} \) are the mean values of the data. We can substitute equation (17-28) into equation (17-27), multiply by \((1 + b^2)^2\), and use the variables \(U_i = X_i - \overline{X} \) and \(V_i = Y_i - \overline{Y} \) and after a few lines of manipulation get
\[\sum_{i=1}^{n} \left[b^2U_iV_i + b(U_i^2 - V_i^2) \right] - U_iV_i = 0 . \] \hspace{1cm} (17-29)

This has the solution
\[b = -\frac{\sum_{i=1}^{n} V_i^2 - \sum_{i=1}^{n} U_i^2 \pm \sqrt{\left(\sum_{i=1}^{n} U_i^2 - \sum_{i=1}^{n} V_i^2 \right)^2 + 4 \left(\sum_{i=1}^{n} U_iV_i \right)^2}}{2\sum_{i=1}^{n} U_iV_i} \] \hspace{1cm} (17-30)

There are two solutions for \(b \) (each with a corresponding value of \(a \) from equation 17-28), one that minimizes \(E \) and a second that gives a perpendicular line that maximizes \(E \).

Robust Line Fitting

In a least squares line in which we assume all the data have the same uncertainty we seek to minimize
Minimize \(a, b \)
\[E = \sum_{i=1}^{n} (Y_i - a - bX_i)^2 = \sum_{i=1}^{n} r_i^2 \]
(17-31)

This process is sensitive to outliers, particularly so when the outliers lie near the lower or upper limits of the range of \(x_i \). The breakdown point for the least squares line fit (L_2 regression) is \(1/n \). We can overcome this problem to a small extent by minimizing the sum of the absolute misfits (L_1 regression)

Minimize \(a, b \)
\[E = \sum_{i=1}^{n} |r_i| \]
(17-32)

but the L_1 norm also has a breakdown point of \(1/n \).

A robust approach with a breakdown point of \(\frac{1}{2} \) is to minimize the median misfit.

Minimize \(a, b \)
\[\text{median} |r| = \text{median} |Y_i - a - bX_i| \]
(17-33)

This is equivalent to finding the narrowest strip that encloses half the points. The only way to do this, is by a systematic search through different values of \(b \). For each value of \(b \) we calculate \(Y_i - bX_i \), and then find the value of \(a \) that minimizes the median of \(|Y_i - bX_i - a| \). One then chooses the \(a \) and \(b \) values that gives the minimum median among all the values of \(b \) analyzed.

One can use this robust statistical method to find and eliminate outliers

\[
\frac{|Y_i - a - bX_i|}{\text{Median} |Y_i - a - bX_i|} > z_{\text{cut}}
\]
(17-34)

where a value of \(z_{\text{cut}} = 4.45 \) is equivalent to 3 standard deviations for a normal distribution. Once the outliers are eliminated, one can apply the least squares line fitting approach.