wednesday, november 25

happy thanksgiving (if you are still here)

today:

 a bunch of stuff...

1. where do the systems we have been discussing deposit sediment?
2. what is the character of that sediment accumulation
3. then, a digression into resources...(in particular, hydrocarbons)
rivers & beaches
where do these systems accumulate sediment?
sedimentary basins

fluvial – channels & floodplain

lacustrine – lake bottom sediments (can be like small ocean)

deltaic – large accumulation @ shoreline

margin – transport of terrigenous sediment seaward

deep ocean – turbidity currents
global sediment thickness
sedimentology (a course in a slide)

sediment:

unconsolidated products of weathering and erosion

- gravel; sand; silt; mud
- transported by rivers, wind, glaciers, etc.

sedimentary rock:

produced by consolidation & cementation of sediment

liothified

3 primary types of sedimentary rock:

- **clastic:** made of *clasts* or rock fragments
- **biological:** associated with particles & processes created by organisms
- **chemical:** precipitated from chemical solution
fluvial basins

important fluvial basin components:

- **channels**: brading, meandering, bars, oxbows
- **floodplain**: splays; muds; swamps; levees; organic material (trees, shrubs, etc)

what is the character of the sediments in these environments?

- sediment size? range of sizes (*sorting*)? lateral & vertical extent?
fluvial environments
fluvial stratigraphy

stratigraphy: classification & interpretation of layered rocks (typically sedimentary rocks)
deltaic sedimentation

important delta environments:

- **distributary channels**: similar to fluvial channels
- **floodplains**: splay, marshes, inter-distributary bays, estuaries, etc.
- **topsets/foresets/bottomsets**: reflecting deceleration of flow towards ocean

what is the character of the sediments in these environments?
deltaic sedimentation
deltaic sedimentation
beach sedimentation

important beach environments:

- **shoreface**: increasingly fine-grained towards sea
- **foreshore**: highest wave energy
- **backshore**: high wave energy berms
- **beach ridges**: wind transport
- **lagoon**: much calmer, marshes, finer grained
shelf/slope sedimentation

what happens here depends a lot on sea level AND whether it is a leading (active) or trailing (passive) edge margin

major sedimentary environments:
 - **high sl shelf**: transport by waves & density currents (high sl)
 - **low sl shelf**: fluvial transport
 - **trailing edge slope**: can be progradning clinoforms

can be an important place for carbonate (biogenic sediment) accumulation
saller et al., 2004

steel, 2004
carbonate reefs
deep sea sedimentation

important environments:

deep sea fans: turbidite channels & floodplains

deep sea oozes: biogenic & chemical
deep sea fans

Savoye et al. (2000)

Pirmez (1995)
carbonate (calcareous) ooze
now: a digression

one of the primary resources that makes our society run is found in sedimentary rocks: **hydrocarbons**

in fact, both the *formation & storage* of hydrocarbons is due to various sedimentary rock formations:

- **organic material provides source:** dark (organic-rich), fine-grained rocks & carbonates
- **porous & permeable rocks are reservoirs:** sandstones, fractured & porous carbonate (remember chemical weathering)
 - **porous:** having holes of one kind or another
 - **permeable:** good for fluids flowing through...holes are big enough and connect

rivers & beaches both happen to make good source & reservoir

- **sources:** floodplains, lagoons, tidal flats...
- **reservoirs:** river channels, splays, beaches, shorefaces...
the ‘petroleum system’

source – organic material

maturation – heat & time (just like cooking a turkey)

migration – ever make vinaigrette?

reservoir – porous, accessible rock

seal – keep oil in reservoir

trap – leads to adequate (worth getting) accumulation
source rock

converting the products of photosynthesis into petroleum
algae creates best oil – easy to convert
dead, woody, plant material typically becomes coal
maturation

time (y axis) & heat (x axis)
migration
migra:on

note ‘quality’ of hydrocarbon depends on ultimate location
reservoir rocks

porosity & permeability

Steel, 2004
traps

structural (plate tectonics)

‘stratigraphic’
exploration

deep earth typically ‘imaged’ via reflection seismic techniques
production
production
production
and...

next week, final lectures on beaches & estuaries
final exam review: friday dec. 5th
final exam: monday dec. 8th; 2:30p

happy thanksgiving, again