1. Due to the water molecule's (H_2O) great abundance in seawater: (10 pts)
 a) Seawater has a high heat capacity
 b) The activity of H_2O is 1 in all equilibrium calculations
 c) Salts dissolve easily in seawater
 d) The activity coefficients of all dissolved constituents are equal
 e) The activity of Ca^{2+} is greater than its concentration.

2. Due to the great abundance of dissolved salts in seawater: (10 pts)
 a) sea water has a higher density than freshwater
 b) sea water has a higher molar volume than freshwater
 c) sea water has a higher boiling point than freshwater
 d) sea water has a high ionic strength
 e) sea water has a higher sound absorption than freshwater

3. Some elements in seawater are considered to be conservative.
 a) What is the definition of a conservative element? (5 pts)
 b) There are statements in the literature that uranium (U) is a conservative element in seawater. How would you design a study to show this is true or not true? (5 pts)
4. Both equilibrium and kinetic (dynamic) models have been proposed for the composition of seawater. What arguments can be given favoring the kinetic model relative to the equilibrium approach? (10 pts)

5. As deep water flows from the North Atlantic to the North Pacific the carbonate alkalinity increases from 2350 µEq to 2475 µEq while total CO₂ (e.g., DIC) increases from 2200 µM to 2375 µM. Estimate the average contributions of CaCO₃ dissolution and organic carbon respiration that create this increase in DIC. (15 pts)

6. CaCO₃ is added to water and it dissolves. How will the following parameters vary? (10 pts)

- pH
- alkalinity
- total CO₂
- Ca²⁺
- P_{CO₂}
7. $^{238}\text{U} \left(t_{1/2} = 4.5 \times 10^9 \ \text{yr} \right)$ decays to $^{234}\text{Th} \left(t_{1/2} = 24.1 \ \text{d} \right)$

 a) Define, and give the conditions for, secular equilibrium (5 pts)

 b) Assuming the activity of $^{238}\text{U} = 2.3 \ \text{dpm kg}^{-1}$ what is the molar concentration of ^{234}Th? (10pts)

 c) Assume there has been an extreme bloom period with intensive scavenging that removes most of the ^{234}Th from the water column in the euphotic zone. Suddenly the bloom stops. How long will it take for ^{234}Th to reach secular equilibrium with ^{238}U? (5 pts)

8. Which of the following is a first order process? (10 pts)
 a) River input
 b) Downwelling
 c) Biological Production, with respect to DIC
 d) Biological Production, with respect to N,P, Fe or another biolimiting element
 e) Radioactive decay

9. The Redfield (or RKR) ratio represents (10 pts)
 a) C:N:P content of organic matter formed during photosynthesis
 b) C:N:P content of nutrients released during respiration
 c) C:N:P of preformed nutrients in the surface ocean
 d) C:N:P of nutrient uptake during photosynthesis
 e) C:N:P of organic matter found in sediments
10. Relative to the Atlantic, Pacific deepwater (10 pts)
 a) pH is higher
 b) P_{CO_2} is higher
 c) Alkalinity is higher due to a larger organic C respiration: CaCO$_3$ dissolution rate ratio
 d) Alkalinity is higher due to a smaller organic C respiration: CaCO$_3$ dissolution rate ratio
 e) Total CO$_2$ is higher than alkalinity

11. In which situations is it advantageous to use K’, the apparent equilibrium constant (10 pts)
 a) Ion activities (but not concentrations) can be measured and free energies are known
 b) Trace metal speciation calculations
 c) At ionic strength, I=0
 d) Carbonate system equilibria in seawater
 e) When Q > K.

12. Due to the input of radionuclides during bomb testing in the 1960s, which information has been gained? (10 pts)
 a) Water mass ventilation using chlorofluorocarbon (CFC) tracers
 b) N-S mixing across the equator using 3H as a tracer
 c) Export production using C/234Th ratios
 d) Stagnant boundary layer thickness using a 14C steady state box model
 e) The rate of turbulent mixing in the bottom boundary layer.

13. The oxidation of organic matter (10 pts)
 a) produces dissolved organic carbon
 b) produces dissolved inorganic carbon
 c) consumes energy
 d) provides bacteria with energy for growth and function
 e) is not possible in the absence of oxygen

14. Trace elements with nutrient-like distributions, such as barium and copper (10 pts)
 a) show a linear relationship with salinity and [Cl$^-$]
 b) are depleted at the surface
 c) are enriched at the surface
 d) are regenerated (i.e. increase) with depth
 e) have fixed stoichiometric ratios to P
15. CO\textsubscript{2} and climate. There is evidence that the ocean's circulation varied in a regular way during the past glacial periods. This has to do with the different sources and strengths of bottom water formation.

a) Broecker (1997) used a conservative geochemical tracer called PO\textsubscript{4}* to determine the intensity of the northern and southern sources, where waters of southern origin are described by:

\[
\text{PO}_4^* = \text{PO}_4 + \frac{\text{O}_2}{175 - 1.95} \text{ mmol kg}^{-1}
\]

and waters of northern origin by:

\[
\text{PO}_4^* = \text{PO}_4 + \frac{\text{O}_2}{175 - 0.73} \text{ mmol kg}^{-1}
\]

Explain the origin of these equation and how it can be used for this purpose and why they are different for the northern and southern sources. (5 pts)

b) What were the reorganizations in ocean circulation that occurred in the past and what was their origin? (5 pts)

c) If there are ocean reorganizations in the future, will they be caused by the same mechanism? If not what will be the cause? (5 pts)
16. Acantharian protozoa use strontium to form celestite, SrSO$_4$(s) skeletons. Is the formation of celestite thermodynamically favorable in seawater? The solubility of celestite is written as:

$$\text{SrSO}_4(\text{s}) = \text{Sr}^{2+} + \text{SO}_4^{2-}$$

a) Calculate the equilibrium constant for this reaction at 25°C given the following free energies of formation (ΔG_f^0) and using (ΔG_r^0)=-2.3RT log K=-5.708 log K at 25°C.

<table>
<thead>
<tr>
<th>Species</th>
<th>ΔG_f^0 (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrSO$_4$(s)</td>
<td>-1340.9</td>
</tr>
<tr>
<td>Sr$^{2+}$(aq)</td>
<td>-563.83</td>
</tr>
<tr>
<td>SO$_4^{2-}$(aq)</td>
<td>-744.53</td>
</tr>
</tbody>
</table>

b) What is the equilibrium expression?

c) If seawater has [Sr$^{2+}$]$_T$=0.0928 mmol/L and [SO$_4^{2-}$]$_T$=28.93 mmol/L and the total activity coefficients are $\gamma_{\text{Sr}}=0.25$ and $\gamma_{\text{SO}_4^{2-}}=0.065$, what is ΔG_r? Is the formation of celestite thermodynamically favorable in seawater?

The average partial pressure of N$_2$O in the atmosphere over the Arabian Sea was 313 ppbv or 10$^{-6.50}$ atm. The Henry’s Law constant for N$_2$O solubility at 25°C is $K_H = 10^{-1.59}$ mol l$^{-1}$ atm$^{-1}$.

a. What was the mean saturated concentration of N$_2$O in surface water in mol l$^{-1}$.
 (5 points)

b. The average degree of supersaturation was 130% and the average piston velocity for the average wind speed was 22.7 cm hr$^{-1}$. Calculate the average gas exchange flux in mol cm$^{-2}$ d$^{-1}$ using the stagnant boundary layer model. (10 points)
18. Sometimes different oxidation states of the same element can be both oxidants and reductants. In one case the oxidized form of sulfur (SO_4^{2-}) can react with the reduced form (H_2S) to form solid elemental sulfur (S°). Such a reaction may occur at the oxic-anoxic interface in the Black Sea.

Here are two relevant half reactions:

\[
\begin{align*}
\frac{1}{6} \text{SO}_4^{2-} + \frac{8}{6} \text{H}^+ + \text{e}^- &= \frac{1}{6} S^\circ + \frac{4}{6} \text{H}_2\text{O} \quad \log K = 6.03 \\
\frac{1}{8} \text{SO}_4^{2-} + \frac{10}{8} \text{H}^+ + \text{e}^- &= \frac{1}{8} \text{H}_2\text{S} + \frac{4}{8} \text{H}_2\text{O} \quad \log K = 5.12
\end{align*}
\]

a) write the balanced oxidation-reduction reaction (10 pts)

b) which compounds are oxidants in this reaction (note that there are two oxidants) (5 pts)

c) what is the equilibrium constant for this reaction (5 pts)

d) Is S° stable with regard to this reaction at the point of reaction in the Black Sea where pH = 7.5, $\text{SO}_4^{2-} = 17 \text{ mM}$, $\text{H}_2\text{S} = 1 \mu\text{M}$. Assume for this calculation that concentrations and activities are equal. (10 pts)
19. Fossil fuel CO$_2$ is on its way up from the pre-industrial value of about P$_{CO2} = 300$ µatm to about 600 µatm. By one scenario we can assume that alkalinity will stay constant at 2100 µEq.

Remember that the equilibrium constants for CO$_2$ and carbonic acid are:

\[
K_{H'} = \frac{[H_2CO_3^*]}{P_{CO2}} = 10^{-1.5},
K_{1'} = \frac{[HCO_3^{-}][H^+]}{[H_2CO_3]} = 10^{-6.0},
K_{2'} = \frac{[CO_3^{2-}][H^+]}{[HCO_3^{-}]} = 10^{-9.0}.
\]

a) Calculate the $[H_2CO_3^*]$ in equilibrium with an atmospheric P$_{CO2} = 300$ µatm. (10 pts)

b) Calculate pH for this open carbonate system when P$_{CO2}$ has doubled to 600 µatm. (10 pts)
20. Nitrogen fixation has become the latest "hot topic". Let's assess its importance. A
construct a two-box ocean model for fixed nitrogen as nitrate. Include river inflow,
atmospheric input to the surface box, nitrification input to the surface box at the air-sea
surface, upwelling, downwelling, denitrification in the deep box and a biological flux of
organic N (B). The removal rate to the sediments (S) is expressed as S = f x B.

From the literature we find the following information that we may (or may not) need:
- Global denitrification = 175 TgN y\(^{-1}\)
- River Input = 76 TgN y\(^{-1}\)
- Atmospheric Deposition = 30 TgN y\(^{-1}\)
- Sediment Burial = 25 TgN y\(^{-1}\)
- Upwelling rate V = 300 cm y\(^{-1}\)

a) Draw the two-box model for this problem and label the fluxes.(5 pts)

b) Write the mass balance equations for the surface and deep boxes. (10 pts)

c) If the average concentration of nitrate in the deep box is \(C_D = 30 \mu M\), and the surface
box is \(C_S = 0 \mu M\), what is the rate of nitrogen fixation required for a steady state
balance? (10 pts)

d) What is its importance relative to river, atmospheric and upwelling input? (5 pts)